APPLIED STATISTICS: Data Analysis

VOLUME III: ADVANCED

Master data analysis with a simple and effective method that allows for fast results and autonomy in your studies
(1) Simplified Essential Concepts
(2) Illustrated step-by-step data analysis

(3) The best free software for your analysis

MASTER DATA ANALYSIS QUICKLY, EFFORTLESSLY, AND WITH UNDENIABLE RESULTS

Discover our SIMPLE teaching method that will empower you to analyze your data on your own in no time.

We cover ALL the essential steps and only what's truly necessary for analyzing your data.

Built on the proven principle that it's entirely possible to accurately analyze data without complex concepts or formulas.

This book will serve you well, even if you have no prior knowledge of statistics. All 3 volumes are included in this offer.

GET YOURS BY CLICKING HERE!

MORE INFORMATION ABOUT VOLUME III

The Volume III initiative is one-of-a-kind.

It allows us to incorporate topics suggested by our followers in each new edition.

And those who have already purchased the package will have lifetime access to these updates.

Volume III covers more advanced topics than those covered in the first two volumes.

As we plan to regularly update Volume III with new topics, we encourage you to send us your suggestions via our Instagram profile.
@learnstatisticseasily

FORGET

EVERYTHING

YOUHAVEEVER

LEARNED ABOUT

STATSTICS

TO ANALYZE

YOUR DATA

Applied Statistics: Data Analysis (Volume III - Advanced) / Alves, Ana. - Learn Statistics Easily, 2023. 133 p. 2nd ed.

1. Statistics. 2. Biostatistics. 3. Learn Statistics Easily. 4. Applied statistics. 5. Data analysis. 6. Inferential statistics. 7. Descriptive statistics. 8. Graphs. 9. Sample size.
© 2023 Learn Statistics Easily

All rights reserved. This publication or any part of it may not be reproduced or used without the copyright holder's express permission.

Learn Statistics Easily statisticseasily.com

PREFACE

Welcome to your ultimate guide to unlocking the power of data analysis - quickly, easily, and confidently.

This book presents a groundbreaking teaching method that empowers you to independently analyze your data with speed and precision.

We've distilled the essentials, providing only the necessary information to conquer data analysis without getting lost in complexities.

Say goodbye to intimidating concepts, formulas, and tables. This guide is designed to benefit you, even if your knowledge of statistics is limited.

Our innovative approach to "learning data analysis quickly, easily, independently, and with confidence" sets this book apart from the rest.

Let this guide be your invaluable companion as you embark on the exciting data analysis journey.

MASTERING OUR METHODOLOGY

(a) We distill only the most vital concepts, making them effortlessly understandable.
(b) Crystal-clear examples and diagrams bring each concept to life.
(c) Our algorithm for selecting statistical analyses and graphs is streamlined and straightforward.
(d) We tackle the most prevalent statistical analyses, covering 99\% of real-world scenarios.
(e) Our detailed, step-by-step instructions, paired with vivid illustrations, make data analysis a breeze to grasp.
(f) Experience the ultimate in user-friendly, comprehensive, and intuitive free statistical software.

SUMMARY

1) GETTING STARTED: ESSENTIAL KNOWLEDGE
Grasp the key concepts in a simplified and accessible manner.
2) TOP FREE STATISTICAL SOFTWARE
Discover premier tools for data analysis, graphing, spreadsheets, and sample size calculations.
(3) DESCRIPTIVE STATISTICS: SUMMARY MEASURES
Dive into the most vital measures for summarizing and showcasing your data.
(4) INFERENTIAL STATISTICS: UNLEASHING DATA ANALYSIS
Learn to choose the right analysis and apply it with precision.

5 PICKING THE PERFECT GRAPH (VOL. II)
Follow a step-by-step guide to selecting and creating the ideal graph for your data.

6 BONUS CONTENT \& ADVANCED TOPICS (VOL. III)
Delve into extra tips and explore slightly more sophisticated subjects.

TABLE OF CONTENTS - VOLUME III

(1) CALCULATING SAMPLE SIZE

1. Why calculate sample size? 11
2. Sample size calculation software 14
3. Key parameters of G*Power. 15
4. Calculating the sample size. 20
5. Comparing unpaired groups 24
6. Comparing paired groups 41
7. Looking for relationship between variables 69
8. HOW TO PERFORM A SAMPLE
9. Why should we use an appropriate sampling method. 96
10. Basic concepts. 97
11. Types of sampling 100
12. Final considerantions on sampling 104
13. How to do in practice. 107
3 EXTRA ADVANCED TOPICS
14. P-value: the return. 112
15. Effect size 118
16. Confidence interval 122
17. Test Power 130
4) ADVANCED INFERENTIAL ANALYSIS
1. Generalized linear model upcoming

TABLE OF CONTENTS - VOLUME III

CHAPTER 1: CALCULATING SAMPLE SIZE

LOOKING FOR DIFFERENCESBETWEEN UNPAIRED GROUPS

1. Independent samples t-test (Mann-Whitney U-test) 25
2. One-way ANOVA (Kruskal-Wallis H-test). 30
3. Two-way ANOVA (factorial) 35
LOOKING FOR DIFFERENCES BETWEEN PAIRED GROUPS
4. Paired samples t-test (Wilcoxon signed-rank test) 42
5. One-way repeated measures ANOVA (Friedman test) 48
6. Two-way repeated measures ANOVA 55
7. Mixed-design ANOVA 62
LOOKING FOR RELATIONSHIPS
between variables
8. Pearson correlation (Kendall's Tau \& Spearman's Rank) 70
9. Simple linear regression 74
10. Multiple linear regression. 78
11. Simple binary logistic regression 84
12. Multiple binary logistic regression 91

MUCH TO LEARN. YOU STILL

 HAVE

 HAVE
 YODA

ㅡㅡ LEARN STATISTICS EASILY

CHAPTER 1

CALCULATING

SAMPLE

SIZE

1. WHY CALCULATE SAMPLE SIZE?

When conducting a sample, we collect data from only a portion of the elements that make up the population.

This is because collecting data from all elements in the population would be time-consuming and expensive.

Moreover, collecting all this data would be unnecessary if we follow the steps outlined here.

Due to the sampling error - represented by the difference between the true population value and the sample result - a sample will never perfectly represent the population.

SAMPLE

ERROR

= TRUE POPULATION VALUE

 RESULTThis error hinders our ability to infer population characteristics from the sample data.

Depending on its magnitude, this error can lead to false conclusions.

Therefore, in a more superficial analysis, the smaller the sampling error, the better.

How can we reduce the sampling error?

Firstly, we should always consider the best costbenefit balance. Then, using an adequate sample size calculated beforehand, we should collect the data using an appropriate sampling method (Volume III: Chapter 2).

2. SAMPLE SIZE CALCULATION

SOFTWARE

G*Power: Statistical Power Analyses is a powerful and free statistical tool for sample size calculation.

Aside from other functions, such as those related to test power and effect size, G*Power is the ideal software for computing the sample size of the tests we cover in this book, including t-tests, ANOVA, linear regression, and so on.

You can download $G *$ Power from its official website.

On the website, scroll down until you find the Download section, choose the desired version, either Windows or macOS, and download and install G*Power.

Each sample size calculation in G*Power can be divided into three simple steps:

1. Selection of the appropriate test

2. Inputting the parameters
3. Estimating the effect size

GALCULATING THE SAMPLE SIZE

(ARE THESE UNPAIRED GROUPS DIFFERENT?)

5
 COMPARING
 UNPAIRED GROUPS

5.1 INDEPENDENT SAMPLES T-TEST

5.2 ONE-WAY ANOVA

5.3 TWO-WAY ANOVA (FACTORIAL)

5.1 INDEPENDENT SAMPLES T-TEST

Example:

Test if there is a difference in height between male and female individuals in an indigenous tribe.

Sample Size Calculation:

From a pilot study, we obtained 4 observations from each of the 2 groups and then estimated their mean and standard deviation.

1. When opening G*Power, click on Tests: Means: Two independent groups.

2. Now we will fill in the Input Parameters according to the following information:

Tail(s): Mark One if the test is one-tailed or Two if the test is twotailed. But when will the test be one-tailed or two-tailed?

If the alternative hypothesis $(\mathrm{H} 1)$ is specific, for example, "the mean of group 1 is greater than the mean of group 2," we use the onetailed test.

If the alternative hypothesis is general - without the initial distinction of greater or smaller - for example, "the means are different between the groups," we use the two-tailed test.

This hypothesis should be based on existing knowledge in the study field. If you are unsure, keeping the Two-tailed option is best.

- a err prob (significance level): The probability of rejecting the null hypothesis when it is true (Type I error).

Usually, the values used are $\mathbf{0 . 0 5}$ or $\mathbf{0 . 0 1}$. A significance level of 0.05 , for example, indicates a 5% risk of concluding that there is a difference when there is no real difference.

- Power ($\mathbf{1} \boldsymbol{-} \boldsymbol{\beta}$ err prob) (test power): The probability of rejecting the null hypothesis if false is how much the test controls Type II error.

Usually, an acceptable value is between $\mathbf{0 . 8 0}$ and $\mathbf{0 . 9 9}$.
The higher the test power, the better, but as we increase it, the required sample size also increases.

- Allocation ratio N2/N1: If you want the sample size of the two groups to be the same, enter the value $\mathbf{1}$.

Enter the required value if you wish to have another allocation ratio between the groups.
3. Effect size d: This measure represents the strength of the difference detected between the tested groups.

Conventionally, $d=0.20$ is considered weak, $d=0.50$ is considered medium, and $d=0.80$ is considered strong.

To estimate d for our sample size calculation, click on Determine =>, and a new tab will open. In this new tab, we need to enter values for the Mean and SD $\boldsymbol{\sigma}$ (standard deviation), which we obtained from the pilot study, for each of the two groups.

These summary measures can be easily calculated according to the instructions in Volume I: Chapter 3: Topic 5.

After filling in, click on Calculate and transfer to the main window. The d value appropriate for your data will be calculated, and the Effect size d field will be filled in.

4. With all the Input Parameters filled in, we need to click Calculate in the lower right corner to obtain the number of samples we need to collect.

In this case, our calculated total sample size was 14 elements, 7 in group 1 and 7 in group 2, which we must obtain randomly from the population.

Thus, we will need this sample size to detect this effect size; and, assuming it is correct, with a 5% probability of committing a Type I error and 95% probability of not committing a Type II error.

NOTES

1. How can we obtain the two groups' mean and standard deviation values to estimate the effect size?

Commonly, these values are estimated in two ways:
(1) through a pilot collection with a few samples or
(2) through other studies with similar populations, species, or conditions.

Sometimes, we may have reason to directly assume the expected effect size without estimating the mean and standard deviation summary measures.
2. To calculate the sample size for the Mann-Whitney U test, a non-parametric equivalent to the t-test:

Click on Tests: Means: Two independent groups: Wilcoxon (non-parametric) in the first step.

Keep the Parent distribution option as Normal.
The rest of the steps are the same.

CALCULATING THE SAMPLE SIZE

(ARE THESE PAIRED GROUPS DIFFERENT?)

6
 COMPARING
 PAIRED GROUPS

6.1 PAIRED SAMPLES T-TEST

6.2 ONE-WAY REPEATED MEASURES ANOVA
6.3 TWO-WAY REPEATED MEASURES ANOVA

6.1 PAIRED SAMPLES T-TEST

Example:

Does medication use affect older women's blood pressure (BP)? The BP of each participant will be measured twice, once before and once after the intervention (medication).

Sample Size Calculation:

From a pilot study, we obtained BP measurements of 4 older women before and after the intervention. We then calculated the data's means, standard deviations, and correlation coefficient.

1. To start, open G*Power and click on Tests: Means: Two dependent groups (matched pairs).

CALCULATING THE SAMPLE SIZE

(ARE THESE VARIABLES RELATED?)

(7) LOOKING FOR

 RELATIONSHIP between variables7.1 PEARSON CORRELATION

7.2 SIMPLE \& 7.3 MULTIPLE LINEAR REGRESSION
7.4 SIMPLE \& 7.5 MULTIPLE LOGISTIC REGRESSION

7.1 PEARSON CORRELATION

Example:

Testing whether there is a correlation between the weight and height of members of an indigenous tribe.

Sample Size Calculation:

We obtained the weight and height of 6 individuals from a pilot study and estimated the correlation coefficient between these two variables.

1. Open G*Power and click on Tests: Correlation and regression: Correlation: Bivariate normal model.

learn statistics easily

1. WHY SHOULD WE USE AN APPROPRIATE SAMPLING METHOD?

We saw in the previous chapter that calculating the sample size is essential for us to have more reliable results in our analyses at the best possible cost-benefit.

However, suppose the sampling is inadequately done in that case, it is not enough to calculate the sample size and obtain an adequate number of elements.

A poorly done sampling introduces biases in the sample, increases the sampling error, and leads us to draw false conclusions.

Sampling represents a process in which we select a part of the elements that make up a population to characterize it.

This process can be done in numerous ways.
Still, there are more appropriate ways to do it according to the situation.

Thus, we will discuss sampling methods and how we should conduct them correctly.

3. TYPES OF SAMPLING

There are two general types of sampling, nonprobabilistic and probabilistic.
© In non-probabilistic sampling, there is a deliberate and arbitrary selection of elements from the population.

It depends on subjective criteria of accessibility and researcher judgment.

They are called, for example, convenience sampling, and judgment sampling, among others.

Thus, for obvious reasons, we will not discuss these types of sampling here.
© In probabilistic sampling, the selection of elements is entirely random, so each individual in the population has a known probability of being part of the sample.

It includes the most rigorous and widely used selection methods in scientific research.
"We must not forget that sampling must always be PRECISE and REPRESENTATIVE of the population."

3.3 STRATIFIED RANDOM SAMPLING

Stratified sampling is a probabilistic sampling method used when one or more criteria must be considered in the population before selecting elements. This method involves two steps:

1. Dividing the population into two or more groups (strata) based on the characteristic of interest. 2. Randomly select elements from each stratum proportionally to its size.

This method allows for better control of the representativeness of different elements within the population.

STRATIFIED
 RANDOM SAMPLING

EXAMPLE: To select 6 people from a population of 18 , dividing the population into 2 strata based on sex. Then, randomly choose 3 men and 3 women from their respective strata, proportionally to their size.

$$
\text { POPULATION } \longrightarrow \text { STRATA } \longrightarrow \text { SAMPLE }
$$

AND NEVER FORGET ABOUT

SAMPLING BIAS

DRAWING CONCLUSIONS FROM NONREPRESENTATIVE DATA OF THE TARGET POPULATION.

In 1948, a Chicago newspaper erroneously projected the next American president based on a phone survey. They did not consider that, at that time, only the upper class could have a telephone. The golden lesson is to always ensure that your sample represents the population.

5. HOW TO DO IT IN PRACTICE

We could do the drawings the old-fashioned way, like using a bag or an urn in a bingo game. But obviously, we have more practical and faster possibilities for this nowadays.

So, first, we need each population element to have a unique identification and to be arranged in a spreadsheet. This identification can be any number, name, code, social security number, etc.

Remember that each element can be a person, an animal, a medical record, a quadrant, a country, a city, a forest, a lagoon, a Petri dish, a house, a purchase, etc.

For our example, let's suppose we have 200 names of patients treated in a clinic, and we want to sample 20 for research.

1. Here, we have this example with the patients' names in alphabetical order.

	A	B	C	D	E	F	G	H	
1	Name								
2	Aaron								
3	Abigail								
4	Adam								
5	Alan								
6	Albert								
7	Alexander								
8	Alexis								
9	Alice								
10	Amanda								
11	Amber								
12	Amy								
13	Andrea								
14	Andrew								

CHAPTER 3

EXTRA
ADVANCED
TOPICS

1. P-VALUE: THE RETURN

In Volume I, we presented a didactic definition of p-value, but it does not accurately reflect its meaning.

Therefore, for initial contact with the topic, this simplification contributes to its understanding.

Thus, as promised, we present a precise definition of the p-value, which simultaneously requires greater attention and abstraction.

When we perform an inferential hypothesis test, such as chi-square, t-test, ANOVA, correlation, regression, etc., we basically have two hypotheses:

NULL HYPOTHESIS (HO)

The standard, simplest, that there is 'no difference between the groups' or 'no relationship between the variables'.

ALTERNATIVE HYPOTHESIS (H1)

An alternative, complementary state to H0, that there are 'differences between groups' or 'relationships between the variables'.

Thus, the fundamental objective of any hypothesis test is to define whether we will reject or not the null hypothesis (HO) - and this definition will depend on two fundamental factors:

Thus, in technical terms, the p-value can be precisely defined as:

The p-value represents the probability of obtaining a result equal to (or more extreme than) the one obtained from our data, assuming that the null hypothesis is true.

If my test returned, for example, a p-value of 2%, what does this mean?

If we consider HO true, the probability of obtaining results equal to (or more extreme than) ours would be only 2%.

However, since it is lower than $a=5 \%$, we reject H0.

See next for a more detailed explanation.

p <0.05

"We Are The
 Champions"

THE LADY TASTING TEA

It was a summer afternoon in Harpenden, England, in the early 1920s.

A group of scientists - a statistician, a phycologist, and a biochemist - had sat at a table for afternoon tea at the Rothamsted Experimental Station.

The phycologist, Muriel Bristol, insisted that tea poured over milk tasted different than when milk was poured over tea.

Everyone questioned her - What could be the difference?

They couldn't conceive that there could indeed be any difference in taste.

3. CONFIDENCE INTERVAL

Some concepts already discussed in Volume I are essential for understanding the confidence interval, such as population, sample, and sampling error.

A population encompasses all elements.
On the other hand, a sample includes only a portion of these elements.

Inferential statistics allow us to draw conclusions about the population through the sample.

However, since a sample represents only a part of the population, it will never be perfect.

Thus, the sampling error is born, represented by the difference between the true population value and the value obtained in the sampling.

Imagine we want to estimate the average weight of all oranges in an orchard.

The best way to do this is by collecting a random sample with an appropriate sample size and presenting the mean and the confidence interval.

What factors can influence the size of the confidence interval?
(1) The larger the sample size, the smaller the confidence interval.
(2) The lower the variability within the population, the smaller the confidence interval.
(3) The lower the confidence level (1-a) - for example, 90,95 , or 99% - the smaller the confidence interval.

Now, back to the oranges.
In our sampling of 10 oranges, we obtained a mean weight of 150 g with a confidence interval (95\%) of 125 to 175 g.

But what does this mean?

To explain, we will perform 19 other random samples, each with 10 other oranges randomly selected from the orchard.

Thus, 95% of the 20 random samples we made will contain the population mean of the weight of the oranges in the orchard.

See the graph with an example of 20 samples, where only one (5\%) does not contain the population mean, as expected.

Whalit! IITSNOTI IOVER YETI

MORE CONTENT WILL BE INCLUDED IN
THIS VOLUME. IT WILL BE UPDATED MORE TIMES! VISIT OUR INSTAGRAM PROFILE AND MAKE TOPIC SUGGESTIONS.

0
 @learnstatisticseasily

MASTER DATA ANALYSIS QUICKLY, EFFORTLESSLY, AND WITH UNDENIABLE RESULTS

Discover our SIMPLE teaching method that will empower you to analyze your data on your own in no time.

We cover ALL the essential steps and only what's truly necessary for analyzing your data.

Built on the proven principle that it's entirely possible to accurately analyze data without complex concepts or formulas.

This book will serve you well, even if you have no prior knowledge of statistics. All 3 volumes are included in this offer.

GET YOURS BY CLICKING HERE!

Unlock the secrets to analyzing your data swiftly, effortlessly, and confidently.

Our SIMPLE approach focuses on teaching you precisely what you need to know to conquer data analysis.

Leave behind the complexities of concepts, formulas, and tables - this course proves that accurate data analysis is achievable for everyone.

This accessible resource is tailored for those with little or no prior knowledge of statistics.

Discover our unparalleled method for "fast, easy, and confident data analysis" - a game-changer you won't find anywhere else.

